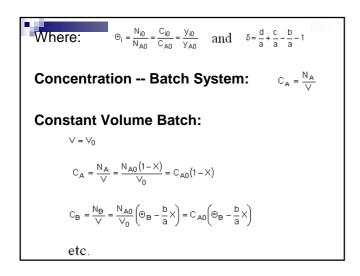
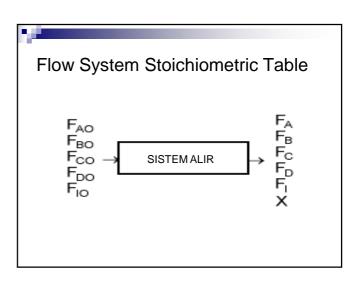


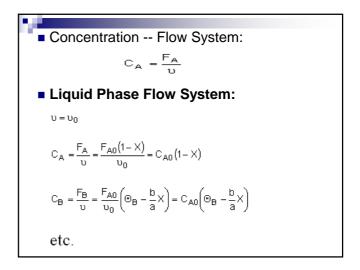
Stoichiometric Tables $A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D$ Using stoichiometry, we set up all of our equations with the amount of reactant A as our basis.

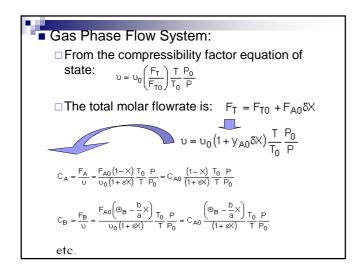
Batch System Stoichiometric Table					
<u>Species</u>	<u>Symbol</u>	<u>Initial</u>	<u>Change</u>	<u>Remaining</u>	
А	А	N _{A0}	- N _{AO} X	$N_{A} = N_{A0}(1 - X)$	
В	В	$N_{B0} = N_{A0} \odot_B$	$-\frac{b}{a}N_{A0}X$	$N_{B} = N_{A0} \left(\Theta_{B} - \frac{b}{a} X \right)$	
С	С	$N_{CO} = N_{AO} \Theta_C$	$+\frac{c}{a}N_{A0}X$	$N_{C} = N_{A0} \left(\bigoplus_{C} + \frac{c}{a} X \right)$	
D	D	$N_{D0} = N_{A0} \Theta_D$	$+\frac{d}{a}N_{A0}X$	$N_D = N_{A0} \left(\Theta_D + \frac{d}{a} X \right)$	
Inert	Ι	$N_{I} = N_{A0} \Theta_{I}$		$N_{I} = N_{A0} \Theta_{I}$	
		N _{TO}		$N_T = N_{T0} + \delta N_{A0} X$	

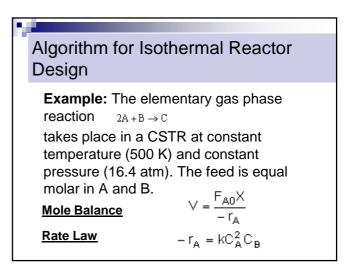




N		Reactor		Reactor
<u>Species</u>	<u>Symbol</u>	Feed	<u>Change</u>	Effluent
А	А	F _{A0}	$-F_{A0} imes$	$F_A=F_A0(1-\times)$
В	В	$F_{B0} = F_{A0} \otimes_B$	$-rac{b}{a}F_{A0} imes$	$F_B = F_A0\!\left(\boldsymbol{\Theta}_B - \frac{b}{a} \times \right)$
С	С	$F_{C0}=F_{A0} \Theta_C$	$+\frac{c}{a}F_{A0}X$	$F_C = F_A0 \bigg(\textcircled{\texttt{O}}_C + \frac{c}{a} \times \bigg)$
D	D	$F_{D0} = F_{A0} \Theta_D$	$+ \frac{d}{a}F_{A0}X$	$F_D = F_A0 \bigg(\boldsymbol{\Theta}_D + \frac{d}{a} \times \bigg)$
Inert	Ι	$F_{10} = F_{A0} \odot_{I}$		$F_{I} = F_{A,0} \odot_{I}$
		FTO		$F_T = F_{T0} + \delta F_{A0} X$
Where	$: \odot_i = \frac{F_{i0}}{F_{A0}}$	$=\frac{C_{i0}\upsilon_0}{C_{A0}\upsilon_0}=\frac{C_{i0}}{C_{A0}}$	$\frac{y_{i0}}{y_{A0}} = \frac{y_{i0}}{y_{A0}}$ a	nd $\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$

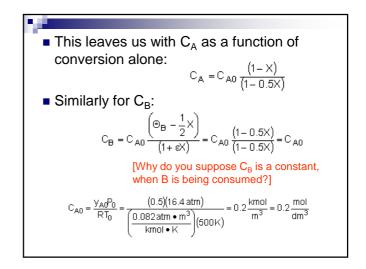






For a gas phase system:
$$c_A = \frac{F_A}{v} = \frac{F_{A0}(1-X)}{v_0(1+eX)F_0/P}(T/T_0)$$

If the conditions are isothermal (T = T₀) and
isobaric (P = P₀):
 $C_A = C_{A0} \frac{(1-X)}{(1+eX)} \frac{T_0}{T} \frac{P}{P_0} = C_{A0} \frac{(1-X)}{(1+eX)}$
And if the feed is equal molar, then:
 $\epsilon = y_{A0}\delta = 0.5 \left(\frac{1}{2} - \frac{1}{2} - 1\right) = -0.5$



Combine	$-r_{A} = kC_{A}^{2}C_{B} = kC_{A0}^{3} \frac{(1-X)^{2}}{(1-0.5X)^{2}}$
	$-r_{A} = \left(10 \frac{dm^{6}}{mol^{2} \cdot s} \right) \left(0.2 \frac{mol}{dm^{3}}\right)^{3} \frac{(1-X)^{2}}{(1-0.5X)^{2}}$
	$-r_{A} = \left(0.08 \frac{\text{mol}}{\text{dm}^{3} \cdot \text{s}}\right) \frac{\left(1 - X\right)^{2}}{\left(1 - 0.5X\right)^{2}}$
<u>Evaluate</u>	$V = \frac{F_{A0}X}{-r_{A}} = \frac{(5 \text{ mol/s})(0.9)[1 - 0.5 (0.9)]^{2}}{\left(0.8 \frac{\text{mol}}{\text{dm}^{3} \cdot \text{s}}\right)(1 - 0.9)^{2}}$
	$\vee = 1701 \text{dm}^3$

Example: The elementary liquid phase reaction
$$2A \rightarrow B$$
is carried out isothermally in a CSTR. Pure A
enters at a volumetric flow rate of 25 dm³/s and
at a concentration of 0.2 mol/dm³.What CSTR volume is necessary to achieve a
90% conversion when k = 10 dm³/(mol*s)?Mole Balance $V = \frac{F_{Ao}X}{-r_a}$ Mole Balance $V = \frac{F_{Ao}X}{-r_a}$ Stoichiometryliquid phase (v = vo) $F_{Ao} = v_o C_{Ao}$ $F_A = vC_A = v_o C_A$

$C_A=rac{F_A}{v}=rac{F_A}{v_o}=rac{F_{Ao}\left(1-X ight)}{v_o}$				
$C_{A} = C_{Ao} \left(1 - X \right)$				
<u>Combine</u> $V = \frac{v_{o}C_{Ao}X}{kC_{Ao}^{2}(1-X)^{2}} = \frac{v_{o}X}{kC_{Ao}(1-X)^{2}}$				
<u>Evaluate,</u> at X = 0.9,				
$V = \frac{25 \frac{dm^3}{s} (0.90)}{\left(10 \frac{dm^3}{mol \cdot s} \right) \left(0.2 \frac{mol}{dm^3} \right) \left(1-0.9\right)^2}$	Space Time			
$V = 1125 \text{ dm}^3$	$\tau = \frac{V}{v_o} = \frac{1125 dm^3}{25 \frac{dm^3}{5}} = 45s$			

